
Package: shinyCox (via r-universe)
October 27, 2024

Title Create 'shiny' Applications for Cox Proportional Hazards Models

Version 1.1.0

Description Takes one or more fitted Cox proportional hazards models
and writes a 'shiny' application to a directory specified by
the user. The 'shiny' application displays predicted survival
curves based on user input, and contains none of the original
data used to create the Cox model or models. The goal is
towards visualization and presentation of predicted survival
curves.

License LGPL (>= 3)

URL https://github.com/harryc598/shinyCox

BugReports https://github.com/harryc598/shinyCox/issues

Imports shiny, survival (>= 3.3)

Suggests DT, knitr, rmarkdown, shinydashboard

Config/testthat/edition 3

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

Repository https://harryc598.r-universe.dev

RemoteUrl https://github.com/harryc598/shinycox

RemoteRef HEAD

RemoteSha 348d6a96004a8a05e5aec01608d34e9ac1be68d0

Contents
cox_KM_plots . 2
cox_times_table . 3
get_confint . 5
make_coxph . 6
predict_one_coxfit . 7

1

https://github.com/harryc598/shinyCox
https://github.com/harryc598/shinyCox/issues

2 cox_KM_plots

predict_se . 8
prep_coxfit . 9
shine_coxph . 9
surv_pred_info . 11

Index 13

cox_KM_plots Generate Cox-model predicted Kaplan-Meier plots

Description

The main purpose of this function is to be used to create plots within the shiny app created by
shine_coxph(). For this reason the argument it takes, KM.hat, is created through a process delin-
eated in the example. This can make the function more complicated if you want to use it outside of
the shiny app, although it is fully possible to do so.

Usage

cox_KM_plots(KM.hat, clrs = NULL, confint, ylab = "Prob")

Arguments

KM.hat Time and survival probability created by predict_one_coxfit()

clrs color of lines

confint logical value to determine if confidence intervals should be plotted

ylab text label for y-axis

Value

Plot of predicted survival curve(s)

Examples

library(survival)
First colon is split into three treatment arms to compare predicted
survival across arms
split_colon <- split(colon, colon$rx)

colon_arm1 <- split_colon$Obs
colon_arm2 <- split_colon$Lev
colon_arm3 <- split_colon$`Lev+5FU`

One coxph model is fit for each treatment

colon1ph <- coxph(Surv(time, status) ~sex + age + obstruct + nodes,
colon_arm1, x = TRUE, model = TRUE)

colon2ph <- coxph(Surv(time, status) ~ sex + age + obstruct + nodes,

cox_times_table 3

colon_arm2, x = TRUE, model = TRUE)

colon3ph <- coxph(Surv(time, status) ~ sex + age + obstruct + nodes,
colon_arm3, x = TRUE, model = TRUE)

Creating list of models
cox.fit.list <- vector("list", 3)
cox.fit.list[[1]] <- prep_coxfit(colon1ph)
cox.fit.list[[2]] <- prep_coxfit(colon2ph)
cox.fit.list[[3]] <- prep_coxfit(colon3ph)

Creating new data row for predictions
new.data <- colon[1,]
Creating KM.hat object
n.models=length(cox.fit.list)
KM.hat=vector('list',n.models)
lp=rep(NA,n.models)
names(KM.hat)=names(cox.fit.list)
for (i in 1:n.models)
{
km.hat=predict_one_coxfit(cox.fit.list[[i]],new.data)
lp[i]=attr(km.hat,'lp')
sfit=list(time=km.hat$time,surv=km.hat$surv)
class(sfit)='survfit'
KM.hat[[i]]=sfit

}
Plot
cox_KM_plots(KM.hat)

cox_times_table Create table of Cox-model predicted probabilities

Description

Generates tables of predicted probabilities at specified time or vector of times. The KM.hat object
contains time and predicted survival probability information as a list of survfit objects.

Usage

cox_times_table(KM.hat, fixTimes = NULL)

Arguments

KM.hat List of survfit objects

fixTimes character or vector of characters representing times for which predicted survival
probability is given

4 cox_times_table

Details

The main purpose of this function is to be used within the shiny app for the purpose of creating
predicted probability tables for user-inputted times. For this reason it is not expressly recommended
to use this function outside the context of the shiny app, but it is still possible to do so if desired.
The time or vector of times are inputted as characters due to the use of this function in the shiny
app, where times are inputted as numbers separated by a comma

Value

Table of predicted probabilities, one column for each time, and one row for each curve

Examples

library(survival)
library(shinyCox)
First colon is split into three treatment arms to compare predicted
survival across arms
split_colon <- split(colon, colon$rx)

colon_arm1 <- split_colon$Obs
colon_arm2 <- split_colon$Lev
colon_arm3 <- split_colon$`Lev+5FU`

One coxph model is fit for each treatment

colon1ph <- coxph(Surv(time, status) ~sex + age + obstruct + nodes,
colon_arm1, x = TRUE, model = TRUE)

colon2ph <- coxph(Surv(time, status) ~ sex + age + obstruct + nodes,
colon_arm2, x = TRUE, model = TRUE)

colon3ph <- coxph(Surv(time, status) ~ sex + age + obstruct + nodes,
colon_arm3, x = TRUE, model = TRUE)

Creating list of models
cox.fit.list <- vector("list", 3)
cox.fit.list[[1]] <- prep_coxfit(colon1ph)
cox.fit.list[[2]] <- prep_coxfit(colon2ph)
cox.fit.list[[3]] <- prep_coxfit(colon3ph)

Creating new data row for predictions
new.data <- colon[1,]
Creating KM.hat object
n.models=length(cox.fit.list)
KM.hat=vector('list',n.models)
lp=rep(NA,n.models)
names(KM.hat)=names(cox.fit.list)
for (i in 1:n.models)
{
km.hat=predict_one_coxfit(cox.fit.list[[i]],new.data)
lp[i]=attr(km.hat,'lp')
sfit=list(time=km.hat$time,surv=km.hat$surv)

get_confint 5

class(sfit)='survfit'
KM.hat[[i]]=sfit

}

Function takes KM.hat object and a time or vector of times
cox_times_table(KM.hat, fixTimes = "100")

get_confint Get confidence intervals for predicted survival curves

Description

Creates confidence levels for plotting predicted survival curves.

Usage

get_confint(p, se, conf.type, conf.int, ulimit = TRUE)

Arguments

p Vector of survival probabilities

se Vector of standard errors

conf.type Type of confidence interval, includes ’plain’, ’log’, ’log-log’, ’logit’, and ’arc-
sin’.

conf.int The level for two-sided confidence interval on the predicted survival curve, de-
fault is 0.95.

ulimit Should upper bound be limited to 1, default is ’TRUE’

Value

list of length two, containing the lower and upper confidence levels

Examples

library(survival)
library(shinyCox)
colondeaths <- colon[colon$etype == 2,]
split_colon <- split(colondeaths, colondeaths$rx)

colon_arm1 <- split_colon$Obs
colon1ph <- coxph(Surv(time, status) ~ factor(extent) + nodes + strata(surg)

+ factor(differ),
colon_arm1,
x = TRUE, model = TRUE)

new.data = cbind.data.frame(`factor(extent)` = 3,
`surg` = "surg=0",`factor(differ)` = 2,`nodes` = 5)

6 make_coxph

coxfit = prep_coxfit(colon1ph)
coxlist = surv_pred_info(colon1ph)

for_ci = predict_se(coxlist, coxfit, new.data)

get_confint(for_ci$surv, for_ci$std.err, conf.int = 0.95,
conf.type = "log-log")

make_coxph Wrapper to create survival::coxph() object suitable for
shine_coxph()

Description

Performs survival::coxph() with model = TRUE and x = TRUE as defaults. Checks that Cox model
is appropriate for use with shine_coxph().

Usage

make_coxph(formula, data, ...)

Arguments

formula a formula object, with the response on the left of a ~ operator, and the terms
on the right. The response must be a survival object as returned by the Surv
function.

data a data.frame in which to interpret the variables named in the formula, or in the
subset and the weights argument.

... other arguments which will be passed to coxph(). Note that x = TRUE and model
= TRUE are the default arguments (and required by shine_coxph()), you do not
need to include them here.

Value

Object of class "coxph" representing the fit

Examples

library(survival)
ovarianph <- make_coxph(Surv(futime, fustat) ~ age + strata(rx),
data = ovarian)

predict_one_coxfit 7

predict_one_coxfit Compute Cox-model predicted survival function

Description

Computes Cox-model predicted survival function for one new data row using coxfit list object
created by prep_coxfit().

Usage

predict_one_coxfit(coxfit, newdata)

Arguments

coxfit This is an object returned by prep_coxfit()

newdata vector of new data

Value

data.frame of predicted survival probabilities over time, one column is time, one is probability

Note

This function’s primary use is within the shiny app, where a coxph object is not available. It can be
used outside of that context but that is the main purpose of this function, and why it only accepts the
return object of prep_coxfit(). In the context of the shiny app, the new data is taken from user
inputs.

Examples

First, fit model using coxph
library(survival)
bladderph <- coxph(Surv(stop, event) ~ rx + number + size, bladder,
model = TRUE, x = TRUE)
Use coxph object with function
bladderfit <- prep_coxfit(bladderph)
Take first row of bladder as 'new data'
newdata <- bladder[1,]
predictions <- predict_one_coxfit(bladderfit, newdata)

8 predict_se

predict_se Creates predicted survival and standard errors for confidence inter-
vals

Description

Adapted from parts of survfit.coxph(), computes predictions for standard errors based on surv_pred_info()
output and newdata from the shiny app.

Usage

predict_se(listsurv, coxfit, newdata)

Arguments

listsurv Output from surv_pred_info() function

coxfit coxfit object created for predictions. Used to find strata

newdata Data used to make predicted standard errors

Value

a list of number of subjects for each curve, times at which the curve has a step, number at risk for
each time, number of events at each time, number censored at each time (no event but exit risk
set), estimated survival, cumulative hazard at each transition, and standard error of the cumulative
hazard.

Examples

library(survival)
library(shinyCox)
colondeaths <- colon[colon$etype == 2,]
split_colon <- split(colondeaths, colondeaths$rx)

colon_arm1 <- split_colon$Obs
colon1ph <- coxph(Surv(time, status) ~
factor(extent) + nodes + strata(surg) + factor(differ), colon_arm1, x =
TRUE, model = TRUE)

new.data = cbind.data.frame(`factor(extent)` = 3, `surg` =
"surg=0",`factor(differ)` = 2,`nodes` = 5)

coxfit = prep_coxfit(colon1ph)
coxlist = surv_pred_info(colon1ph)

predict_se(coxlist, coxfit, new.data)

prep_coxfit 9

prep_coxfit Create simplified coxph() object for shiny app

Description

Simplifies coxph() output and checks that predictions match those of the original object

Usage

prep_coxfit(coxph.result, tol = 1e-07)

Arguments

coxph.result Result returned by coxph()

tol numerical tolerance for prediction differences, default is 1e-7

Value

list containing baseline survival estimates, linear predictor estimates, predictor types, coefficient
estimates, mean and range of numeric predictors, levels of categorical predictors, strata if any,
coxph() formula, table of hazard ratios, table with proportional hazard assumption results, number
of subjects, and number of events

Examples

First, fit model using coxph
library(survival)
bladderph <- coxph(Surv(stop, event) ~ rx + number + size, bladder,
model = TRUE, x = TRUE)
Use coxph object with function
bladderfit <- prep_coxfit(bladderph)

shine_coxph Generates a shiny app for predictions from Cox model(s)

Description

Writes a shiny app to visualize predicted survival curves from one or multiple Cox models. One
feature of this function is that the shiny app, once created, will not contain any identifiable data,
containing only information necessary for predictions.

Usage

shine_coxph(..., app.dir = NULL, theme = c("default", "dashboard"))

10 shine_coxph

Arguments

... Arbitrary number of Cox proportional hazard models, created by survival::coxph()
or make_coxph(), which automatically ensures the models are appropriate for
shine_coxph()

app.dir Directory where shiny app is created. Specifically, a sub-folder will be made
containing the app.R file as well as the .Rdata file within app.dir. If no di-
rectory is provided, execution will pause and the user will be asked to confirm
whether this sub-folder may be created in the working directory or to stop the
function and provide an input app.dir.

theme Theme of shiny app.

• "default: default theme, requires only shiny
• "dashboard": requires "shinydashboard" and "DT" packages

Value

A list containing Cox model information along with the shiny app code. The app is written to the
directory while the function is operating.

Notes

There are some requirements in order for this function to run without error: in your original
survival::coxph() function or functions, model = TRUE and x = TRUE are required arguments
(used to create the simplified "coxph" object). Currently, this function does not support penal-
ized models (e.g., as created by ridge() and pspline()). Multiple strata terms and strata by
covariate interaction terms in the formula are also not currently supported, but workarounds are
available by respectively using a new strata factor variable encompassing all combinations of de-
sired stratum variable levels. Use of time-varying covariates (e.g. with tt()) and multi-state mod-
els is not supported in our function. The package is not intended to support Fine-gray models by
survival::finegray() creating Cox models, but doing so will not result in an error.

Guidelines

This package is intended to visualize and present predicted survival functions for fitted Cox models.
In regards to formula notation, the variable names used are ultimately what will be displayed in
the application. Using functions in the formula will work, but with multiple nested functions it
will fail. Using "." notation is not currently supported. The na.action is inherited from the Cox
models, with omit being the only option with support at this time. For these reasons, we recommend
creating all final variables (including suitable transformations) with meaningful names prior to using
survival::coxph().

Examples

library(survival)

Data used is from survival package, renamed for legibility
names(leukemia)[names(leukemia) == "x"] <- "treatment"
Make Cox model, with x = TRUE and model = TRUE

surv_pred_info 11

model1 <- coxph(Surv(time, status) ~ treatment,
leukemia, x = TRUE, model = TRUE)

Use shine_coxph() to create shiny app in temporary directory
shine_coxph("Model 1" = model1)

Get directory for shiny app (should be first, check file list if not)
filedir <- list.files(tempdir())[1]

Run shiny app from temporary directory
shiny::runApp(paste0(tempdir(), "/", filedir))
Remove app from directory once finished
unlink(paste0(tempdir(),"/",filedir), recursive = TRUE)

surv_pred_info Obtains information for standard errors of predictions

Description

Computes necessary information to calculate standard errors and confidence intervals in shiny app.
This is adapted from parts of survfit.coxph(). This function is meant to be used in conjunction
with predict_se().

Usage

surv_pred_info(model, ctype, individual = FALSE, id, se.fit = TRUE, stype = 2)

Arguments

model a coxph object

ctype whether the cumulative hazard computation should have a correction for ties,
1=no, 2=yes.

individual deprecated argument, replaced by id

id optional variable name of subject identifiers. Not supported in app

se.fit a logical value indicating whether standard errors should be computed. Default
is TRUE for standard models, FALSE for multi-state (code not yet present for
that case.)

stype computation of the survival curve, 1=direct, 2=exponential of the cumulative
hazard. Default is 2.

Value

A list of information needed for computing predicted standard errors.

12 surv_pred_info

Examples

library(survival)

colondeaths <- colon[colon$etype == 2,]
split_colon <- split(colondeaths, colondeaths$rx)
colon_arm1 <- split_colon$Obs

colon1ph <- coxph(Surv(time, status) ~ factor(extent) + nodes + strata(surg)
+ factor(differ),
colon_arm1,
x = TRUE, model = TRUE)

surv_pred_info(colon1ph)

Index

cox_KM_plots, 2
cox_times_table, 3

get_confint, 5

make_coxph, 6
make_coxph(), 10

predict_one_coxfit, 7
predict_one_coxfit(), 2
predict_se, 8
predict_se(), 11
prep_coxfit, 9
prep_coxfit(), 7

shine_coxph, 9
shine_coxph(), 2, 6
surv_pred_info, 11
surv_pred_info(), 8
survfit.coxph(), 8, 11
survival::coxph(), 6, 10
survival::finegray(), 10

13

	cox_KM_plots
	cox_times_table
	get_confint
	make_coxph
	predict_one_coxfit
	predict_se
	prep_coxfit
	shine_coxph
	surv_pred_info
	Index

